Sergiy Yakovenko 


Associate Professor



My current research direction is focused on the principles of interactions between the mechanisms of neuromechanical hierarchy both the context of stroke and spinal cord injury using animal models and in the context of improving control of advanced arm prosthesis for human amputees. One of the challenges for the current brain-machine interface is the lack of functional understanding of how neural processes interact within and across the different levels of neuraxis. Specifically, we have limited understanding of how cortical synergies or motor primitives are controlled to produce coupled sequential activation observed in reaching movements and locomotion. Lissencephalic (smooth) rat cortex is the perfect target for the microelectrode arrays with recording-stimulation capabilities to address this question. Building on my experience in recording and stimulation of cat motor cortex and brainstem structures I have collected preliminary data in rats using floating microelectrode arrays to demonstrate the feasibility of the methods. We have developed a new type of walkway specifically designed to create a dextrous locomotor task that requires cortical contribution in rodents. In addition, we are developing neuromechanical models for data processing that will guide our analysis.


My research experience and expertise in conducting multidisciplinary studies are advantageous prerequisites to the success of proposed experimental and theoretical studies and the development of innovative technologies for rehabilitation. Results of these studies may lead to the development of novel therapies using closed-loop stimulation systems to quantify and to restore impaired motor functions.